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Abstract
We define pseudo-reality and pseudo-adjointness of a Hamiltonian, H, as
ρHρ−1 = H ∗ and µHµ−1 = H ′, respectively. We prove that the former
yields the necessary condition for a spectrum to be real whereas the latter helps
in fixing a definition for the inner-product of the eigenstates. Here we separate
out the adjointness of an operator from its Hermitian adjointness. It turns out
that a Hamiltonian possessing a real spectrum is first pseudo-real, further it
could be Hermitian, PT-symmetric or pseudo-Hermitian.

PACS numbers: 03.65.Ge, 03.65.−w, 03.65.Ca, 03.65.Ta, 11.30.Er, 11.30.Qe

If a Hamiltonian, H, having a discrete spectrum commutes with an anti-linear operator, X, the
spectrum contains either real or complex conjugate pairs of eigenvalues [1], in the former case
H and X have common eigenstates and in the latter case it does not happen. During the last
few years a new scope for even a non-Hermitian Hamiltonian to possess a real spectrum can
be seen in this light. It has been found [2] that a PT-invariant Hamiltonian, i.e. [PT, H ] = 0,
where P : x → −x, T : i → −i has real eigenvalues when X = PT and H admit common
eigenstates and the PT-symmetry is called exact. Otherwise, the eigenvalues are complex
conjugate pairs and PT-symmetry is said to be spontaneously broken. Very interestingly, prior
to the calculations, hitherto just by looking at the Hamiltonian, one cannot tell whether a
PT-symmetric potential will have real or complex (conjugate pairs of ) energy eigenvalues.
This intriguing feature has inspired the pursuit [2–7] of both analytically and numerically
solved models of PT-symmetric potentials.

Further, the phenomenon of real eigenvalues of non-Hermitian Hamiltonians has been
found to be connected with the already known concept of pseudo-Hermiticity. A Hamiltonian
is pseudo-Hermitian [8–17] if

ηHη−1 = H † (1)

where η is called the metric and it is a linear operator. It has also been known that

(E∗
m − En)�

†
m· η�n = 0 Nη,n = �†

n · η�n. (2)
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Here we propose to choose matrix notation for the subtle reason that this notation has a separate
and explicit sign for the adjoint (transpose) operation. The sign † jointly denotes complex
conjugation, ∗, and transpose (adjoint), ′, of the operators or vectors. Note that (2) merely
asserts two important features of the eigenstates: (i) if eigenvalues are real and distinct, the
eigenstates will be η-orthogonal as �

†
m · η�n = εδm,n; (ii) complex eigenvalues will have

zero pseudo-norm, i.e., Nη,n = 0. Here, we must bring home the fact that the concept of
pseudo-Hermiticity as such does not yield an explicit proof for the reality of eigenvalues (even
under any further condition), it can only support real eigenvalues indirectly (see equation (2)).
This shortcoming of pseudo-Hermiticity which has gone unnoticed [8–17] both recently and
initially motivates the present work.

Several PT-symmetric potentials having a real spectrum have been found to be parity
pseudo-Hermitian where η = P [10]. Several complex potentials which are both
PT-symmetric and non-PT-symmetric have been found to be pseudo-Hermitian when
η = e−θpx [10]. This operator affects an imaginary shift in the coordinate, i.e. ηxη−1 = x +iθ.

Several other Hamiltonians of both types have been reported [11, 12] to be pseudo-Hermitian
under η = eφ(x): a gauge-like transformation. (Weak) pseudo-Hermiticity [13], pseudoanti-
Hermiticity [14] of Hamiltonians and a recipe [15] for construction of pseudo-Hermitian
potentials have also been proposed. Further, pseudo-Hermitian random matrices have been
conceived to propose Gaussian pseudo-unitary ensembles (GPUE) [16].

Since PT-symmetry can provide the contact with physical situations and systems, re-
casting of the more general property of pseudo-Hermiticity in terms of PT-symmetry has been
taken up. This has been achieved mainly through the proposal of the interesting existence of
anti-linear commutants [9, 13]. Later these commutants have been identified as generalized
symmetries C, PT and CPT [18–24] of the non-Hermitian Hamiltonians possessing real
eigenvalues. Though C, which denotes a novel charge-conjugation symmetry analogous
to that well known in relativistic field theory, was first proposed [18] due to the characteristic
indefiniteness of the PT-norm [7].

At this stage of the developments, we find that the adjointness of a Hamiltonian has
not been taken into account when we discuss the PT-symmetry or pseudo-Hermiticity of a
Hamiltonian. As a result, we find that a potential despite being both PT-symmetric and pseudo-
Hermitian and possessing a real spectrum does not satisfy (e.g. [11]) the PT-orthogonality
(PT-inner-product) [7]:

(E∗
m − En)�

PT
m ·�n = 0 NPT,n = �PT ′

n ·�n. (3)

It does, however, satisfy the η-pseudo-orthogonality condition (2). This is as though PT-
symmetry is not enough to ensure orthogonality of eigenstates. A special analysis has been
carried out [17] to uphold PT-symmetry in this regard, eventually it yielded a condition more
akin to (2).

Moreover, as mentioned above, the concept of pseudo-Hermiticity at best does not
contradict the occurrence of the real eigenvalues, nevertheless it does not provide a direct
proof for it. In this regard the following works are important. It has been proved that if a
pseudo-Hermitian Hamiltonian possesses real eigenvalues then there exists (one can find) a
metric of the type η = OO† [9] or (OO†)−1 [13] under which the Hamiltonian is pseudo-
Hermitian. Next, following matrix algebra it has been stated and proved [22] that if a matrix
Hamiltonian has real eigenvalues and a diagonalizing matrix D then it is pseudo-Hermitian
under η+ = (DD†)−1 and vice versa. However, following these works one can only find that
the metric η and also the anti-linear commutants [9, 13] are dynamical as they are essentially
generated from the eigenbasis and so they are entangled with the Hamiltonian.
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In this work, we introduce the concept of pseudo-reality and pseudo-adjointness of a
Hamiltonian by proposing to separate out the adjointness of an operator from the Hermitian
adjointness, a subtle point which has been missed in the developments described above.

Let us first discuss the adjointness of an operator. We propose to use ′ sign for adjoint and
transpose if the Hamiltonian is in differential and matrix form, respectively. The adjoint of a
differential operator A denoted as A′ is defined as [25]

u · Av − v · A′u = dW(u, v)

dx
(4)

i.e. the right-hand side is an exact differential and W is called the bilinear concomitant [25].
The functions u, v are two arbitrary vectors from a vector space. Here the dot denotes simple
multiplication. Subsequently, we have(

dn

dxn

)′
= (−1)n

dn

dxn
n = 1, 2, . . . . (5)

Thus for the quantum mechanical operators—position, momentum and kinetic energy—we
have

(x)′ = x (px)
′ = −px and (K)′ = K. (6)

Thus, Hamiltonians of the type p2
x

/
(2m) + V (x) are self-adjoint, i.e. H = H ′. Usually, we

use the concept of Hermitian adjointness in quantum mechanics, i.e.

(px)
† =

(
−ih̄

d

dx

)′∗
= px (7)

and call an operator A ≡ px,K and x to be self-(Hermitian)adjoint by also noting that
〈A�|�〉 = 〈�|A†�〉 [25, 26]. The phrase Hermitian is also dropped from the self-(Hermitian)
adjoint and it is taken for granted in Hermitian quantum mechanics. Nevertheless, while
investigating the real spectrum of non-Hermitian Hamiltonians, we have to disentangle these
two. Note that, in matrix notation, we have

(Au)′ · v − u′ · A′v = 0 (8)

if ′ denotes the transpose of a matrix and a dot denotes matrix multiplication. In matrix algebra,
incidentally one defines the ‘adjoint’ of a matrix as adj(A) = A−1|A|, which should be taken
as a misnomer for quantum mechanical discussions. Let us keep in mind that (px)

∗ = −px

and the following transformations,

TpxT
−1 = −px = PpxP

−1 T xT −1 = x = P(−x)P −1 T KT −1 = K = PKP −1

(9)

for further discussions.
We propose to call a Hamiltonian, H, pseudo-real, if

ρHρ−1 = H ∗ (10a)

where ρ is such that

ρ∗ρ = 1 (10b)

noting that H ∗∗ = ρ∗H ∗ρ−1∗ ⇒ H = ρ∗ρHρ−1ρ−1∗ ⇒ ρ∗ρ = 1. Next, we propose to call
H as pseudo-adjoint, if

µHµ−1 = H ′ (11a)

where

µ = µ′ (11b)

noting that H ′′ = µ−1′H ′µ′ ⇒ H = µ−1′µHµ−1µ′ ⇒ µ′ = µ.
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Proposition 1. If a pseudo-real (10) Hamiltonian, H, possesses a discrete spectrum, then the
eigenvalues are either real or complex conjugate pairs.

Proof. Recalling that (AB)∗ = A∗B∗, let H� = E�

⇒ (H�)∗ = (E�)∗ ⇒ H ∗�∗ = E∗�∗
(12)

⇒ ρHρ−1�∗ = E∗�∗ ⇒ H(ρ−1�∗) = E∗(ρ−1�∗).

�

The first and the last parts imply that if E is an eigenvalue with eigenfunction, �, then so
is E∗ with eigenfunction, ρ−1�∗. Since each � gets mapped to ρ−1�∗, the multiplicities of
eigenvalues will be the same.

Corollary. If E is non-degenerate, then

E = E∗ if ρ−1�∗ = ε�. (13)

Proposition 2. If a Hamiltonian, H, is pseudo-real (10) and pseudo-adjoint (11), then it is
pseudo-Hermitian (1) under

η = (µρ−1)′. (14)

Recall that (AB)′ = B ′A′.

Proof.

ρHρ−1 = ρ(µ−1H ′µ)ρ−1 ⇒ H ∗ = (ρµ−1H ′µρ−1) ⇒ H ∗′ = (µρ−1)′H(ρµ−1)′. (15)

�

Finally we have

(µρ−1)′H((µρ−1)′)−1 = H †. (16)

Further, the orthogonality of the eigenstates will follow according to (2), which now reads

(E∗
m − En)�

†
m· (µρ−1)′�n = 0 Nη,n = �†

n· (µρ−1)′�n. (17)

We must remark that ρ and µ like η are linear and non-unique.
Hermiticity of H follows when we have ρ = µ. PT-symmetry of the Hamiltonian follows

when we have ρ = P and µ = 1. In addition to this, if we treat complex conjugation as T in
(13), we rediscover the fact that eigenvalues of a PT-symmetric potential will be real provided
PT � = ε�, i.e � is also the eigenstate of PT. Let us have a quick illustration: if H0 = cpx ,
we find that this Hamiltonian is pseudo-real under parity P, it possesses real eigenvalues ±ck

and the eigenstates are � = e±ikx , with ε = 1.

Proposition 3. The ρ-pseudo-reality of a Hamiltonian, H, having a discrete spectrum is
equivalent to the existence of an anti-linear commutant [13], � = ρ−1K0, of H. Here K0

denotes the operation of complex conjugation: K0(AB + C) = A∗B∗ + C∗.

Proof.

[H,�] = 0 ⇔ ρ−1K0H = Hρ−1K0 ⇔ ρHρ−1 = K0HK−1
0 ⇔ ρHρ−1 = H ∗. (18)

�

Note that � unlike �E [13] is not essentially eigenbasis dependent. Condition (13) for the
reality of eigenvalues could be rewritten as

�� = ε�. (19)
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Thus, three hypotheses, namely, the simultaneity (19) of eigenstate � for H and �, the
commutativity of H and � (or equivalently the pseudo-reality of H) (18) and the reality of
eigenvalues are mutually consistent as one finds that

[H,�]� = (E∗ − E)ε�. (20)

Given two, the third one is implied. The property (10b) renders that �2 = 1, ruling out the
essential existence of Kramer’s degeneracy when Hamiltonians are pseudo-real. It may be
recalled that if the anti-linear commutant of H is such that �2 = −1, the energy levels are
essentially doubly degenerate [26].

In the following, we review several available Hamiltonians (H1–H8) possessing a real
discrete spectrum in the light of their pseudo-reality and pseudo-adjointness. The Hamiltonians
of the type H1 = p2

x

/
(2m)+Ve(x)+iVo(x) [2–7], where e and o denote even and odd functions,

are such examples. For such PT-symmetric potentials, the self-adjointness of H is implied by
µ = 1, and the following orthogonality condition

(Em − En)�
′
m · �n = 0 (21)

will also work, automatically. Note the absence of † in (21). One can check that H1 possesses
real eigenvalues since it is pseudo-real, PH1P

−1 = H ∗
1 and condition (13) is explicitly satisfied

by the energy eigenstates. Several exactly solvable models of PT-symmetric potentials [2–7]
are available for a verification.

The complex quasi-exactly solvable Hamiltonian [3]

H2 = p2
x

2m
− (z cosh 2x − 3i)2 (22)

has the first three eigenvalues (real if z2 � 1/4) and eigenfunctions known analytically. H2

was termed as PT-symmetric under T : i → −i, and P : x → iπ/2 − x. Note that both the
operations do not commute [6]. We find that H2 more appropriately is pseudo-real under the
transformation ρ : x → (iπ/2 − x) and self-adjoint (µ = 1). The eigenfunctions [3] can be
checked to satisfy the proposed condition (13).

Let us consider the following Hamiltonian

H3 = [px + iβx]2

2m
+

1

2
mα2x2 (23)

which admits real eigenvalues and real eigenvectors [11]. We find that H3 is trivially pseudo-
real (10) under ρ = 1 and we will have real eigenvalues and real eigenfunctions too [11]. Next,
H3 is pseudo-adjoint (11) as e−βx2

H3 eβx2 = H ′
3. So we have µ = e−βx2 = η. Alternatively, we

may take H3 to be pseudo-real under ρ = P and then η = e−βx2
P, also see [15]. Obviously, in

both cases H3 would rather be categorized as pseudo-Hermitian despite being PT-symmetric.
Next let us consider the Hermitian Hamiltonian

H4 = [px − 3γ x2]2

(2m)
+

1

2
mα2x2 (24)

which has real eigenvalues. One can readily check that ρ = µ = P , this leads to Hermiticity.
We find that e−2iγ x3

H4 e2iγ x3 = H ∗
4 = H ′

4 that means we again have the situation of Hermiticity
where ρ = µ = e−2iγ x3

. Other interesting options are to choose ρ = P and µ = e−2iγ x3
or

ρ = e−2iγ x2
and µ = P . In both situations, we have η = e−2iγ x3

P , see also [17]. The η-norm
(2) will be indefinite, (−1)n, n = 0, 1, 2, . . . .
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Intriguingly, when we choose to see even a Hermitian Hamiltonian (e.g. (24)) as
PT-symmetric or pseudo-Hermitian both the norms are indefinite (positive–negative).
However, the Hermitian norm, namely, �†� remains definite (positive). This point has
earlier been revealed and remarked [20, 22], however, it is often overlooked (see, e.g.,
[21, 23]).

Complex Morse (CM) potential V CM(x) = (A + iB)2 e−2x − (2C + 1)(A + iB) e−x which
is non-PT-symmetric was found [6] to have real eigenvalues. Note that the real Morse (RM)
potential is written as V RM(x) = D2 e−2x − (2C + 1)D e−x and V CM(x) is nothing but
V RM(x − ia). The Hamiltonian with this potential has been investigated [10] to be pseudo-
Hermitian under η = e−2apx . If real potentials V (x) admit real eigenvalues then the potentials
V (x − ia) are also found to possess identical eigenvalues. When real and imaginary parts of
V (x − ia) are separated out, the rewritten potential would actually appear to be ‘different’
and even ‘unrelated’ to V (x). The equivalence of two spectra will be due to the fact that
the Hamiltonian H(x) = p2

x

/
(2m) + V (x) follows: e−apx H(x − ia) eapx = H(x). We

find that e−2apx H(x − ia) e2apx = H(x + ia) implying that ρ = e−2apx and µ = 1. Thus,
both the orthogonality conditions (17) and (21) will be satisfied. We have indefinite norms:
NPT,n = (−1)n = Nη,n.

In the following, we take up examples of simple pseudo-Hermitian matrices, for further
demonstration of the pseudo-reality and pseudo-adjointness of Hamiltonians:

H5 =
[
a + ib c

c a − ib

]
H6 =

[
a + c ib

ib a − c

]
(25)

H7 =
[

a i(b − c)

i(b + c) a

]
c2 > b2 .

The eigenvalues of these matrices are a ± √
c2 − b2. In the following, we make an interesting

use of Pauli matrices. For H5, we find that ρ = σx, µ = 1, so H5 is pseudo-Hermitian under
η = σx . One can check that H6 is pseudo-real under ρ = σz and H6 = H ′

6, so it is pseudo-
Hermitian under η = σz as we have µ = 1 again. The Hamiltonian H7 is pseudo-adjoint
under σx and it is pseudo-real under σz to display pseudo-Hermiticity under η = σy .

So far we could get ρ and µ and hence η merely by inspection for several models of non-
Hermitian Hamiltonian possessing real eigenvalues. Now we intend to show that there exists
at least eigenbasis-dependent ρ and µ when a non-Hermitian H possesses real eigenvalues.
Let us define a real diagonal matrix E = diag[E1, E2, E3, . . . , En], i.e., E∗ = E and E ′ = E .

Proposition 4. If a complex Hamiltonian, H, possessing a real spectrum is diagonalizable by
an operator D, it is pseudo-real (10) under ρ = D∗D−1 (the converse is also true).

Proof.

D−1HD = E ⇒ D−1∗H ∗D∗ = E∗ ⇒ D−1∗ρHρ−1D∗ = E ⇒ ρ = D∗D−1. (26)

�

It may be checked that the interesting property of ρ in (10b) will be satisfied here. In the
theory of matrices such a matrix is called circular.

Proposition 5. If a Hamiltonian is diagonalizable by an operator D, it is pseudo-adjoint (11)
under µ = (DD′)−1.
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Proof.

D−1HD = E ⇒ D′H ′D−1′ = E ′ ⇒ D′µHµ−1D−1′ = E ⇒ µ = (DD′)−1. (27)

�

One may check that µ is self-adjoint (11b).

Proposition 6. If a Hamiltonian H possessing a real spectrum is pseudo-real under
ρ = D∗D−1 and pseudo-adjoint under µ = (DD′)−1, it is pseudo-Hermitian under
η = (DD†)−1 (the converse is also true).

The proof follows straight from proposition 2. When H is Hermitian D will be unitary
(U † = U−1). We find that ρ = U ∗U † = µ and η = 1.

IIIustration. The following Hamiltonian H8

H8 =
[
a + ib c + id
c − id a − ib

]
�1 =

[−e−iθ

e−iφ

]
(28)

�2 =
[

eiθ

e−iφ

]
�1 =

[
1
0

]
�2 =

[
0
1

]

is pseudo-real under σx and possesses real eigenvalues a ∓ e, where e = √
c2 + d2 − b2 if

c2 + d2 > b2. Here �n are eigenvectors of H and �n provides a fundamental orthonormal
basis. D can be constructed as D = ∑

n �n · �′
n. We find the expressions for ρ, µ and η+,

ρ =
[

1 −2ieiφ sin θ

0 e2iφ

]
µ = sec2θ

2

[
1 −i eiφ sin θ

−i sin θ eiφ cos 2θe2iφ

]

η+ = sec2θ

2

[
1 −i sin θ eiφ

i sin θ e−iφ 1

]
. (29)

We have introduced θ = tan−1(b/e) and φ = tan−1(d/c). This illustration also displays the
non-uniqueness of ρ. Using ρ = σx and µ as in (29), we can construct η = (µσx)

′. This
metric η will satisfy the orthogonality condition (2), however, it does not yield the η-norm (2)
of the vectors �n as real, whereas the η+-norm will be real and positive definite.

The PT-symmetric potentials in finite basis space yield finite-dimensional matrix
Hamiltonians. In this regard, it is interesting to note that two-dimensional and three-
dimensional matrix Hamiltonians obtained [27] for the potentials of type V (x) = ix2n+1

are pseudo-real where ρ = σz and

ρ =

1 0 0

0 −1 0
0 0 1


 (30)

respectively. Some more interesting aspects of finite, D-dimensional, PT-symmetric
Hamiltonians have recently been discussed [23, 24].

The separation of adjointness from Hermitian adjointness is natural when one deals with
real eigenvalues of a non-Hermitian Hamiltonian. We conclude that this results in the condition
of pseudo-reality which turns out to be the most elementary condition on a Hamiltonian for the
eigenvalues to be real or complex-conjugate paris. Consequently, Hermitian, PT-symmetric,
pseudo-Hermitian and weakly pseudo-Hermitian Hamiltonians are first pseudo-real. Next,
the condition of pseudo-adjointness (11) helps in fixing the appropriate inner-product of
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the eigenstates. This is where the present work can be seen to propose a fundamental
decomposition of η as (µρ−1)′.

Eventually, we find that pseudo-reality comes to its logical end, that is, η-pseudo-
Hermiticity, however, not without enriching and supplementing it with a relaxed necessary
condition (10) and a crucial auxiliary condition (13) on the eigenstates for real eigenvalues.
However, once again the condition for the reality of eigenvalues of pseudo-real Hamiltonians
given in (13) or (19) and (26) is eigenbasis dependent and could not be liberated. In this
regard, the simple examples presented here, where ρ and µ are independent of eigenbasis, are
worthwhile. Admittedly, it is still not possible to predict, by merely looking at a pseudo-real
Hamiltonian, whether it will have real eigenvalues.
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